Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Curr Opin Gastroenterol ; 37(1): 4-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-2318694

ABSTRACT

PURPOSE OF REVIEW: We discuss the potential role of the faecal chain in COVID-19 and highlight recent studies using waste water-based epidemiology (WBE) to track severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RECENT FINDINGS: WBE has been suggested as an adjunct to improve disease surveillance and aid early detection of circulating disease. SARS-CoV-2, the aetiological agent of COVID-19, is an enveloped virus, and as such, typically not associated with the waste water environment, given high susceptibility to degradation in aqueous conditions. A review of the current literature supports the ability to detect of SARS-CoV-2 in waste water and suggests methods to predict community prevalence based on viral quantification. SUMMARY: The summary of current practices shows that while the isolation of SARS-CoV-2 is possible from waste water, issues remain regarding the efficacy of virial concentration and subsequent quantification and alignment with epidemiological data.


Subject(s)
COVID-19/epidemiology , Public Health Surveillance/methods , SARS-CoV-2/isolation & purification , Sewage/virology , COVID-19/diagnosis , Feces/virology , Global Health , Humans
2.
PLoS One ; 18(2): e0282101, 2023.
Article in English | MEDLINE | ID: covidwho-2276508

ABSTRACT

BACKGROUND: Communicable diseases pose a severe threat to public health and economic growth. The traditional methods that are used for public health surveillance, however, involve many drawbacks, such as being labor intensive to operate and resulting in a lag between data collection and reporting. To effectively address the limitations of these traditional methods and to mitigate the adverse effects of these diseases, a proactive and real-time public health surveillance system is needed. Previous studies have indicated the usefulness of performing text mining on social media. OBJECTIVE: To conduct a systematic review of the literature that used textual content published to social media for the purpose of the surveillance and prediction of communicable diseases. METHODOLOGY: Broad search queries were formulated and performed in four databases. Both journal articles and conference materials were included. The quality of the studies, operationalized as reliability and validity, was assessed. This qualitative systematic review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Twenty-three publications were included in this systematic review. All studies reported positive results for using textual social media content to surveille communicable diseases. Most studies used Twitter as a source for these data. Influenza was studied most frequently, while other communicable diseases received far less attention. Journal articles had a higher quality (reliability and validity) than conference papers. However, studies often failed to provide important information about procedures and implementation. CONCLUSION: Text mining of health-related content published on social media can serve as a novel and powerful tool for the automated, real-time, and remote monitoring of public health and for the surveillance and prediction of communicable diseases in particular. This tool can address limitations related to traditional surveillance methods, and it has the potential to supplement traditional methods for public health surveillance.


Subject(s)
Communicable Diseases , Social Media , Humans , Reproducibility of Results , Communicable Diseases/epidemiology , Public Health Surveillance/methods , Public Health
3.
Annu Rev Public Health ; 44: 55-74, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2264680

ABSTRACT

Public health surveillance is defined as the ongoing, systematic collection, analysis, and interpretation of health data and is closely integrated with the timely dissemination of information that the public needs to know and upon which the public should act. Public health surveillance is central to modern public health practice by contributing data and information usually through a national notifiable disease reporting system (NNDRS). Although early identification and prediction of future disease trends may be technically feasible, more work is needed to improve accuracy so that policy makers can use these predictions to guide prevention and control efforts. In this article, we review the advantages and limitations of the current NNDRS in most countries, discuss some lessons learned about prevention and control from the first wave of COVID-19, and describe some technological innovations in public health surveillance, including geographic information systems (GIS), spatial modeling, artificial intelligence, information technology, data science, and the digital twin method. We conclude that the technology-driven innovative public health surveillance systems are expected to further improve the timeliness, completeness, and accuracy of case reporting during outbreaks and also enhance feedback and transparency, whereby all stakeholders should receive actionable information on control and be able to limit disease risk earlier than ever before.


Subject(s)
COVID-19 , Public Health Surveillance , Humans , Public Health Surveillance/methods , Artificial Intelligence , COVID-19/epidemiology , COVID-19/prevention & control , Geographic Information Systems , Risk Assessment , Population Surveillance/methods , Public Health
4.
JMIR Public Health Surveill ; 8(6): e37377, 2022 06 03.
Article in English | MEDLINE | ID: covidwho-2198054

ABSTRACT

BACKGROUND: The Omicron variant of SARS-CoV-2 is more transmissible than prior variants of concern (VOCs). It has caused the largest outbreaks in the pandemic, with increases in mortality and hospitalizations. Early data on the spread of Omicron were captured in countries with relatively low case counts, so it was unclear how the arrival of Omicron would impact the trajectory of the pandemic in countries already experiencing high levels of community transmission of Delta. OBJECTIVE: The objective of this study is to quantify and explain the impact of Omicron on pandemic trajectories and how they differ between countries that were or were not in a Delta outbreak at the time Omicron occurred. METHODS: We used SARS-CoV-2 surveillance and genetic sequence data to classify countries into 2 groups: those that were in a Delta outbreak (defined by at least 10 novel daily transmissions per 100,000 population) when Omicron was first sequenced in the country and those that were not. We used trend analysis, survival curves, and dynamic panel regression models to compare outbreaks in the 2 groups over the period from November 1, 2021, to February 11, 2022. We summarized the outbreaks in terms of their peak rate of SARS-CoV-2 infections and the duration of time the outbreaks took to reach the peak rate. RESULTS: Countries that were already in an outbreak with predominantly Delta lineages when Omicron arrived took longer to reach their peak rate and saw greater than a twofold increase (2.04) in the average apex of the Omicron outbreak compared to countries that were not yet in an outbreak. CONCLUSIONS: These results suggest that high community transmission of Delta at the time of the first detection of Omicron was not protective, but rather preluded larger outbreaks in those countries. Outbreak status may reflect a generally susceptible population, due to overlapping factors, including climate, policy, and individual behavior. In the absence of strong mitigation measures, arrival of a new, more transmissible variant in these countries is therefore more likely to lead to larger outbreaks. Alternately, countries with enhanced surveillance programs and incentives may be more likely to both exist in an outbreak status and detect more cases during an outbreak, resulting in a spurious relationship. Either way, these data argue against herd immunity mitigating future outbreaks with variants that have undergone significant antigenic shifts.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Pandemics , Public Health Surveillance/methods
5.
JMIR Public Health Surveill ; 7(6): e28269, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-2197912

ABSTRACT

BACKGROUND: COVID-19 is impacting people worldwide and is currently a leading cause of death in many countries. Underlying factors, including Social Determinants of Health (SDoH), could contribute to these statistics. Our prior work has explored associations between SDoH and several adverse health outcomes (eg, asthma and obesity). Our findings reinforce the emerging consensus that SDoH factors should be considered when implementing intelligent public health surveillance solutions to inform public health policies and interventions. OBJECTIVE: This study sought to redefine the Healthy People 2030's SDoH taxonomy to accommodate the COVID-19 pandemic. Furthermore, we aim to provide a blueprint and implement a prototype for the Urban Population Health Observatory (UPHO), a web-based platform that integrates classified group-level SDoH indicators to individual- and aggregate-level population health data. METHODS: The process of building the UPHO involves collecting and integrating data from several sources, classifying the collected data into drivers and outcomes, incorporating data science techniques for calculating measurable indicators from the raw variables, and studying the extent to which interventions are identified or developed to mitigate drivers that lead to the undesired outcomes. RESULTS: We generated and classified the indicators of social determinants of health, which are linked to COVID-19. To display the functionalities of the UPHO platform, we presented a prototype design to demonstrate its features. We provided a use case scenario for 4 different users. CONCLUSIONS: UPHO serves as an apparatus for implementing effective interventions and can be adopted as a global platform for chronic and infectious diseases. The UPHO surveillance platform provides a novel approach and novel insights into immediate and long-term health policy responses to the COVID-19 pandemic and other future public health crises. The UPHO assists public health organizations and policymakers in their efforts in reducing health disparities, achieving health equity, and improving urban population health.


Subject(s)
COVID-19 , Health Policy , Healthy People Programs/methods , Population Health , Public Health Surveillance/methods , Humans , SARS-CoV-2 , Urban Population
6.
JMIR Public Health Surveill ; 7(3): e26719, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-2197901

ABSTRACT

BACKGROUND: Patient travel history can be crucial in evaluating evolving infectious disease events. Such information can be challenging to acquire in electronic health records, as it is often available only in unstructured text. OBJECTIVE: This study aims to assess the feasibility of annotating and automatically extracting travel history mentions from unstructured clinical documents in the Department of Veterans Affairs across disparate health care facilities and among millions of patients. Information about travel exposure augments existing surveillance applications for increased preparedness in responding quickly to public health threats. METHODS: Clinical documents related to arboviral disease were annotated following selection using a semiautomated bootstrapping process. Using annotated instances as training data, models were developed to extract from unstructured clinical text any mention of affirmed travel locations outside of the continental United States. Automated text processing models were evaluated, involving machine learning and neural language models for extraction accuracy. RESULTS: Among 4584 annotated instances, 2659 (58%) contained an affirmed mention of travel history, while 347 (7.6%) were negated. Interannotator agreement resulted in a document-level Cohen kappa of 0.776. Automated text processing accuracy (F1 85.6, 95% CI 82.5-87.9) and computational burden were acceptable such that the system can provide a rapid screen for public health events. CONCLUSIONS: Automated extraction of patient travel history from clinical documents is feasible for enhanced passive surveillance public health systems. Without such a system, it would usually be necessary to manually review charts to identify recent travel or lack of travel, use an electronic health record that enforces travel history documentation, or ignore this potential source of information altogether. The development of this tool was initially motivated by emergent arboviral diseases. More recently, this system was used in the early phases of response to COVID-19 in the United States, although its utility was limited to a relatively brief window due to the rapid domestic spread of the virus. Such systems may aid future efforts to prevent and contain the spread of infectious diseases.


Subject(s)
Communicable Diseases, Emerging/diagnosis , Electronic Health Records , Information Storage and Retrieval/methods , Public Health Surveillance/methods , Travel/statistics & numerical data , Algorithms , COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Feasibility Studies , Female , Humans , Machine Learning , Male , Middle Aged , Natural Language Processing , Reproducibility of Results , United States/epidemiology
7.
JMIR Public Health Surveill ; 8(2): e28737, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2197918

ABSTRACT

BACKGROUND: Despite the availability of vaccines, the US incidence of new COVID-19 cases per day nearly doubled from the beginning of July to the end of August 2021, fueled largely by the rapid spread of the Delta variant. While the "Delta wave" appears to have peaked nationally, some states and municipalities continue to see elevated numbers of new cases. Vigilant surveillance including at a metropolitan level can help identify any reignition and validate continued and strong public health policy responses in problem localities. OBJECTIVE: This surveillance report aimed to provide up-to-date information for the 25 largest US metropolitan areas about the rapidity of descent in the number of new cases following the Delta wave peak, as well as any potential reignition of the pandemic associated with declining vaccine effectiveness over time, new variants, or other factors. METHODS: COVID-19 pandemic dynamics for the 25 largest US metropolitan areas were analyzed through September 19, 2021, using novel metrics of speed, acceleration, jerk, and 7-day persistence, calculated from the observed data on the cumulative number of cases as reported by USAFacts. Statistical analysis was conducted using dynamic panel data models estimated with the Arellano-Bond regression techniques. The results are presented in tabular and graphic forms for visual interpretation. RESULTS: On average, speed in the 25 largest US metropolitan areas declined from 34 new cases per day per 100,000 population, during the week ending August 15, 2021, to 29 new cases per day per 100,000 population, during the week ending September 19, 2021. This average masks important differences across metropolitan areas. For example, Miami's speed decreased from 105 for the week ending August 15, 2021, to 40 for the week ending September 19, 2021. Los Angeles, San Francisco, Riverside, and San Diego had decreasing speed over the sample period and ended with single-digit speeds for the week ending September 19, 2021. However, Boston, Washington DC, Detroit, Minneapolis, Denver, and Charlotte all had their highest speed of the sample during the week ending September 19, 2021. These cities, as well as Houston and Baltimore, had positive acceleration for the week ending September 19, 2021. CONCLUSIONS: There is great variation in epidemiological curves across US metropolitan areas, including increasing numbers of new cases in 8 of the largest 25 metropolitan areas for the week ending September 19, 2021. These trends, including the possibility of waning vaccine effectiveness and the emergence of resistant variants, strongly indicate the need for continued surveillance and perhaps a return to more restrictive public health guidelines for some areas.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Longitudinal Studies , Pandemics/prevention & control , Public Health Surveillance/methods , SARS-CoV-2
8.
JMIR Public Health Surveill ; 7(1): e25538, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-2141302

ABSTRACT

BACKGROUND: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for delays, but implementation details affect accuracy. OBJECTIVE: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene used nowcasting to account for testing and reporting delays. We conducted an evaluation to determine which implementation details would yield the most accurate estimated case counts. METHODS: A time-correlated Bayesian approach called Nowcasting by Bayesian Smoothing (NobBS) was applied in real time to line lists of reportable disease surveillance data, accounting for the delay from diagnosis to reporting and the shape of the epidemic curve. We retrospectively evaluated nowcasting performance for confirmed case counts among residents diagnosed during the period from March to May 2020, a period when the median reporting delay was 2 days. RESULTS: Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, metrics were similar across days when the nowcasts were conducted, with Mondays having the lowest mean absolute error of 183 cases in the context of an average daily weekday case count of 2914. CONCLUSIONS: Nowcasting using NobBS can effectively support COVID-19 trend monitoring. Accounting for overdispersion, shortening the moving window, and suppressing diagnoses on weekends-when fewer patients submitted specimens for testing-improved the accuracy of estimated case counts. Nowcasting ensured that recent decreases in observed case counts were not overinterpreted as true declines and supported officials in anticipating the magnitude and timing of hospitalizations and deaths and allocating resources geographically.


Subject(s)
COVID-19/epidemiology , Public Health Surveillance/methods , Bayes Theorem , Humans , New York City/epidemiology , Retrospective Studies
9.
JAMA ; 328(13): 1295-1296, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-2074835

ABSTRACT

In this Viewpoint, Lauren Gardner, winner of the 2022 Lasker-Bloomberg Public Service Award for creating the COVID-19 Dashboard, discusses the development of the Dashboard and the factors that contributed to its success.


Subject(s)
Awards and Prizes , COVID-19 , Global Health , Pandemics , Public Health Surveillance , COVID-19/epidemiology , Global Health/history , Global Health/statistics & numerical data , History, 21st Century , Humans , Pandemics/statistics & numerical data , Public Health Surveillance/methods , Time Factors , United States/epidemiology
10.
Epidemiol Infect ; 149: e261, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1647899

ABSTRACT

Epidemic intelligence activities are undertaken by the WHO Regional Office for Africa to support member states in early detection and response to outbreaks to prevent the international spread of diseases. We reviewed epidemic intelligence activities conducted by the organisation from 2017 to 2020, processes used, key results and how lessons learned can be used to strengthen preparedness, early detection and rapid response to outbreaks that may constitute a public health event of international concern. A total of 415 outbreaks were detected and notified to WHO, using both indicator-based and event-based surveillance. Media monitoring contributed to the initial detection of a quarter of all events reported. The most frequent outbreaks detected were vaccine-preventable diseases, followed by food-and-water-borne diseases, vector-borne diseases and viral haemorrhagic fevers. Rapid risk assessments generated evidence and provided the basis for WHO to trigger operational processes to provide rapid support to member states to respond to outbreaks with a potential for international spread. This is crucial in assisting member states in their obligations under the International Health Regulations (IHR) (2005). Member states in the region require scaled-up support, particularly in preventing recurrent outbreaks of infectious diseases and enhancing their event-based surveillance capacities with automated tools and processes.


Subject(s)
Epidemics/prevention & control , Public Health Surveillance/methods , World Health Organization/organization & administration , Africa/epidemiology , Communicable Disease Control , Communicable Diseases/epidemiology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Global Health , Humans , Risk Assessment
12.
Int J Environ Res Public Health ; 19(8)2022 04 13.
Article in English | MEDLINE | ID: covidwho-1809866

ABSTRACT

Syndromic surveillance involves the near-real-time collection of data from a potential multitude of sources to detect outbreaks of disease or adverse health events earlier than traditional forms of public health surveillance. The purpose of the present study is to elucidate the role of syndromic surveillance during mass gathering scenarios. In the present review, the use of syndromic surveillance for mass gathering scenarios is described, including characteristics such as methodologies of data collection and analysis, degree of preparation and collaboration, and the degree to which prior surveillance infrastructure is utilized. Nineteen publications were included for data extraction. The most common data source for the included syndromic surveillance systems was emergency departments, with first aid stations and event-based clinics also present. Data were often collected using custom reporting forms. While syndromic surveillance can potentially serve as a method of informing public health policy regarding specific mass gatherings based on the profile of syndromes ascertained, the present review does not indicate that this form of surveillance is a reliable method of detecting potentially critical public health events during mass gathering scenarios.


Subject(s)
Mass Gatherings , Sentinel Surveillance , Disease Outbreaks , Emergency Service, Hospital , Population Surveillance , Public Health Surveillance/methods
13.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687588

ABSTRACT

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Centers for Disease Control and Prevention, U.S. , Genomics , Humans , Prevalence , Public Health Surveillance/methods , United States/epidemiology
15.
Public Health Rep ; 137(2): 239-243, 2022.
Article in English | MEDLINE | ID: covidwho-1673687

ABSTRACT

Monitoring COVID-19 vaccination coverage among nursing home residents and staff is important to ensure high coverage rates and guide patient-safety policies. With the termination of the federal Pharmacy Partnership for Long-Term Care Program, another source of facility-based vaccination data is needed. We compared numbers of COVID-19 vaccinations administered to nursing home residents and staff reported by pharmacies participating in the temporary federal Pharmacy Partnership for Long-Term Care Program with the numbers of COVID-19 vaccinations reported by nursing homes participating in new COVID-19 vaccination modules of the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN). Pearson correlation coefficients comparing the number vaccinated between the 2 approaches were 0.89, 0.96, and 0.97 for residents and 0.74, 0.90, and 0.90 for staff, in the weeks ending January 3, 10, and 17, 2021, respectively. Based on subsequent NHSN reporting, vaccination coverage with ≥1 vaccine dose reached 73.7% for residents and 47.6% for staff the week ending January 31 and increased incrementally through July 2021. Continued monitoring of COVID-19 vaccination coverage is important as new nursing home residents are admitted, new staff are hired, and additional doses of vaccine are recommended.


Subject(s)
COVID-19/prevention & control , Long-Term Care , Nursing Homes , Vaccination Coverage/statistics & numerical data , Centers for Medicare and Medicaid Services, U.S. , Humans , Mandatory Reporting , Public Health Surveillance/methods , SARS-CoV-2 , United States
16.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1639367

ABSTRACT

Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Public Health Surveillance/methods , SARS-CoV-2/genetics , Software , Web Browser , Computational Biology/methods , DNA Mutational Analysis , Databases, Genetic , Genome, Viral , Genomics , Humans , Molecular Epidemiology/methods , Molecular Sequence Annotation , Mutation
17.
Lancet Glob Health ; 10(2): e269-e277, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625222

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and a key driver of childhood mortality. Previous RSV burden of disease estimates used hospital-based surveillance data and modelled, rather than directly measured, community deaths. Given this uncertainty, we conducted a 3-year post-mortem prevalence study among young infants at a busy morgue in Lusaka, Zambia-the Zambia Pertussis RSV Infant Mortality Estimation (ZPRIME) study. METHODS: Infants were eligible for inclusion if they were aged between 4 days and less than 6 months and were enrolled within 48 h of death. Enrolment occurred mainly at the University Teaching Hospital of the University of Zambia Medical School (Lusaka, Zambia), the largest teaching hospital in Zambia. We extracted demographic and clinical data from medical charts and official death certificates, and we conducted verbal autopsies with the guardian or next of kin. RSV was identified using reverse transcriptase quantitative PCR and stratified by age, time of year, and setting (community vs facility deaths). By combining the PCR prevalence data with syndromic presentation, we estimated the proportion of all infant deaths that were due to RSV. FINDINGS: The ZPRIME study ran from Aug 31, 2017, to Aug 31, 2020, except for from April 1 to May 6, 2020, during which data were not collected due to restrictions on human research at this time (linked to COVID-19). We enrolled 2286 deceased infants, representing 79% of total infant deaths in Lusaka. RSV was detected in 162 (7%) of 2286 deceased infants. RSV was detected in 102 (9%) of 1176 community deaths, compared with 10 (4%) of 236 early facility deaths (<48 h from admission) and 36 (5%) of 737 late facility deaths (≥48 h from admission). RSV deaths were concentrated in infants younger than 3 months (116 [72%] of 162 infants), and were clustered in the first half of each year and in the poorest and most densely populated Lusaka townships. RSV caused at least 2·8% (95% CI 1·0-4·6) of all infant deaths and 4·7% (1·3-8·1) of community deaths. INTERPRETATION: RSV was a major seasonal cause of overall infant mortality, particularly among infants younger than 3 months of age. Because most RSV deaths occurred in the community and would have been missed through hospital-based surveillance, the global burden of fatal RSV has probably been underestimated. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Respiratory Syncytial Virus Infections/mortality , Female , Humans , Infant , Infant, Newborn , Male , Public Health Surveillance/methods , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human , Reverse Transcriptase Polymerase Chain Reaction , Zambia/epidemiology
19.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1569348

ABSTRACT

Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.


Subject(s)
COVID-19/epidemiology , Public Health Surveillance/methods , Social Media , COVID-19/diagnosis , COVID-19 Testing , Cross-Sectional Studies , Epidemiologic Methods , Humans , Internationality , Machine Learning , Pandemics/statistics & numerical data
20.
Am J Public Health ; 111(12): 2133-2140, 2021 12.
Article in English | MEDLINE | ID: covidwho-1562412

ABSTRACT

The National Center for Health Statistics' (NCHS's) National Vital Statistics System (NVSS) collects, processes, codes, and reviews death certificate data and disseminates the data in annual data files and reports. With the global rise of COVID-19 in early 2020, the NCHS mobilized to rapidly respond to the growing need for reliable, accurate, and complete real-time data on COVID-19 deaths. Within weeks of the first reported US cases, NCHS developed certification guidance, adjusted internal data processing systems, and stood up a surveillance system to release daily updates of COVID-19 deaths to track the impact of the COVID-19 pandemic on US mortality. This report describes the processes that NCHS took to produce timely mortality data in response to the COVID-19 pandemic. (Am J Public Health. 2021;111(12):2133-2140. https://doi.org/10.2105/AJPH.2021.306519).


Subject(s)
COVID-19/mortality , Data Collection/standards , Public Health Surveillance/methods , Vital Statistics , Cause of Death , Clinical Coding/standards , Ethnic and Racial Minorities , Guidelines as Topic , Health Status Disparities , Humans , SARS-CoV-2 , Sociodemographic Factors , Time Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL